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The irreversible macroscopic dynamics of the Josephson junction coupled to 
external wires acting as a current source is derived rigorously from the under- 
lying microscopic Hamiltonian quantum mechanics. The external systems are 
treated in the singular coupling limit. The use of this limit is explicitly justified 
via an interpretation of the singular coupling limit in terms of the relative 
magnitudes of system, reservoir, and coupling energies. The qualitative behavior 
of the macroscopic dynamical equations is shown to depend sensitively and 
crucially on the interaction between the wires and the superconductors and on 
the size of the wires: the de Josephson effect only happens when one lets Cooper 
pairs be driven into the junction by collective (i.e., "small") reservoirs. 

KEY WORDS: Josephson junction; strong coupling BCS model; mean-field 
Hamiltonian; open system; singular coupling limit; quantum dynamical 
semigroup; individual and collective reservoirs; extremal permutation-invariant 
states; macroscopic dynamics, dc Josephson effect. 

1. I N T R O D U C T I O N  

The rigorous theory of open quantum mechanical systems is not very old. 
It originates essentially from a classical paper by Hepp and Lieb, tl) who 
treated the coupling to the external quantum systems ("reservoirs") by 
introducing the so-called "singular coupling limit," and the equally well- 
known work of Davies, t2) who showed that the so-called "weak coupling 
limit" can be performed in a mathematically exact way. It was shown 
later ~ that both types of couplings can be treated on the same footing: one 
uses the general master equation (constructed first by Nakajima, Zwanzig, 
and others) and shows that under two different limiting conditions the 
memory terms therein can be neglected. The ensuing semigroup structure 
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of the dynamics of the open system motivated detailed investigations of 
quantum dynamical semigroups and their generators. ~4-6) The theory is 
thus well established (for reviews, see refs. 7 and 8). 

However, while especially the weak coupling limit has been 
thoroughly studied for finite open systems, ~9) for the potentially richer 
infinite-volume case there seem to be only very few explicit model dis- 
cussions, applying the techniques to concrete physical systems. I know of 
studies of the Ising model, ~1~ the BCS model, ~11) and the Bose gas ~12'~31 in 
the weak coupling limit, and of the laser ~4) in the singular coupling limit. 
The motivation for such studies is at least twofold. First, they give a 
rigorous microscopic foundation for the visible behavior of the respective 
macroscopic systems; on the other hand, they exemplify and can reveal 
more fully the physical nature of the limiting situations. I emphasize 
this last point, as it is not often discussed explicitly in the literature; in 
particular, the fact that the two limits are mathematically very similar ~15) 
should not obscure the fact that they are utterly different physically 
(compare ref. 16). 

In this paper I study the Josephson junction as an open system in the 
sense that it is driven by external wires acting as a current source. My 
principal aim is to provide a rigorous model for the dc Josephson effect. 
The dc Josephson effect has acquired great importance lately in the study 
of the so-called "macroscopic quantum phenomena ''~17'1s) and a thorough 
theoretical clarification of this conceptually difficult area seems to require 
an account of the underlying systems which is as complete and exact as 
possible. The dc currents in the junction necessitate connecting it to 
current-carrying wires. I treat these external systems in (a slightly 
generalized form of) the singular coupling limit, arguing that this limit is 
the physically proper choice as compared to the weak coupling limit, which 
has also been used in similar situations. (~9'2~ Such arguments, however, 
presuppose a closer examination of the singular coupling limit and its 
physical interpretation, which needs to be contrasted to the one of the 
weak coupling limit. Consequently, I devote a seperate section (Section 3) 
to these questions, where I stress that both limits can be justified by (and 
hence interpreted as the reflection of) specific relations among the system, 
the reservoir, and the coupling energies. 

Besides the choice of the appropriate coupling limit, a model of the 
external wires requires further physical considerations: one can take 
individual reservoirs (i.e., one for each microscopic degree of freedom of the 
system) or collective ones, and one can have electrons or Cooper pairs 
being fed into the junction. The various possible choices can differ widely 
with respect to the ensuing macroscopic dynamical equations. Indeed, 
while I shall let Cooper pairs flow into the system out of a collective reser- 
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voir and arrive at a complete description of the dc Josephson effect, a 
model with electrons out of individual reservoirs, briefly considered in 
ref. 1, leads to different equations exhibiting rather unphysical behavior. 
This sheds some light on the fact that in the singular coupling limit, the 
dynamics is very sensitive even qualitatively to the nature of the coupling, 
in contrast to the situation in the weak coupling limit. (11) 

Having thus given an overview on the conceptual problems to be dealt 
with here, I now briefly describe the mathematical route ! have taken. In 
Section 2 I recall the microscopic, mean-field model Hamiltonian for the 
closed Josephson junction developed in previous work (21) and establish the 
ensuing equations of motion for the expectation values of the physically 
relevant intensive observables in the infinite volume limit. (1) They are valid 
in a large class of nonequilibrium states and form an autonomous set of 
nonlinear differential equations, contracting the description of the junction 
to the evolution of the Cooper pair density, the electron number difference, 
and the phase difference between the two superconductors. The treatment 
of the open system is prepared in Section 3 with an interpretative dis- 
cussion of the coupling limits. In Section 4 I construct the wires and their 
interaction with the superconductors and calculate the generator of the 
semigroup arising from this coupling for the finite junction dynamics in the 
singular coupling limit. A theorem of Ito and Nakagomi (22) makes it 
possible to derive from there the equations of motion for the infinite open 
system in much the same way as for the closed system. These equations 
exhibit the dc Josephson effect and are shown to contain the 
phenomenological theory as an approximation. 

In this way, the present treatment is very similar to the procedure in 
refs. 1 and 10-12, in particular with regard to the order of the various 
limits taken: first, the external systems are treated in the thermodynamic 
limit; second, the singular coupling limit is performed to obtain a quantum 
dynamical semigroup for the evolution of the finite Josephson junction. 
Finally, I take the infinite-volume limit of the junction itself--it is only then 
that the dynamics can be conclusively analyzed. 

The main difference from the approach of Hepp and Lieb is that they 
work with Langevin equations for the time-dependent system operators, 
while I use the master equation, describing the reservoir influence with 
semigroup generators. The latter approach is more flexible (the present 
model cannot be solved via Langevin equations) and makes proofs easier; 
the former contains more information about fluctuations, which, however, 
I do not consider here. An interesting question which I have not followed 
up is whether the model could also be treated with the methods developed 
in ref. 23. 

Finally, I compare this work with previous treatments of the open 
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Josephson junction. Essentially the same model of the wires has been 
considered in refs. 24 and 25 with structurally equivalent results, but the 
derivation is not rigorous. The model of the current driven junction due to 
Hepp and Lieb, (1) which was also used in ref. 26, has been already men- 
tioned; these treatments are rigorous, but one can show (Section 4.4) that 
the ensuing macroscopic dynamics does not give a physically satisfying 
account of the junction behavior. 

As a last comment, I mention that the model structures developed in 
this paper could equally well be used to describe the Fiske effect (27) in the 
Josephson junction: it poses no particular problem to treat a coupling of 
the system to electromagnetic modes in the junction cavity with the same 
methods (see ref. 26). 

2. D Y N A M I C S  OF THE CLOSED JOSEPHSON J U N C T I O N  

2.1. The Model  Hami l tonian 

I use the quasispin formulation of the strong coupling BCS model for 
the two superconductors R and S constituting the junction, which ! briefly 
review. The operators (for R) 

a~-, ak-, ~3 (1) 

create, annihilate, and count the electrons in pairs (k, ~ ; - k ,  4); here, k 
runs over all momenta whose associated energies e(k) lie within a finite 
region around the Fermi surface #R of R, assumed to be cubic with 
volume a3: 

k~AR(a):={k=2~m,m~Z3, le(k)--#R[ <.hmD} (2) 

Let { 1, 2, 3 ..... N} be some denumeration of AR(a); the algebra of operators 
for the finite superconductor is then defined as 

N 

dR(N) := @ d , ,  Mn := line {cr +, a 2, a 3, 1,} (3) 
n ~ l  

The operators a~ ( i= +, - ,  3) obey spin commutation relations and can 
therefore be represented by Pauli matrices on the Hilbert space C2: 

3_1(1 
= ' = ' ~ ' - ~  o - ( 4 )  
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For the infinite system we have 

k eAR(or ) :=  { k = - -  

and the operator algebra is 

} , m e Z 3 ,  n~ N], Is(k)-/tRI ~< hcoz~ (5) 
na 

ar R := (~) ag. (6) 
nE~ 

which is naturally endowed with a quasilocal structure. The physically 
important condensed pairs (Cooper pairs) are described with the intensive 
observables 

1 
~ (7a) 

n = l  

so that c~v := r~rx  is the observable for the density of Cooper pairs in R. (21) 
The operator 

1 
3 (7b) 

measures the particle density in A R in a convenient normalization; it is 
related to the number operator NR in the following way: 

NR = 2Nr~ + N1 

We can now write down the BCS Hamiltonian: 

H~cs(N ) = N(eR(2r 3 + t ~v) -- gr~vrN ) (Sa) 

The same structures can be established for the right superconductor S; this 
leads to the operators sN,i i =  +, - ,  3, and the Hamiltonian 

HScs(N) = N(ss(2S~ + l u) - g s ~ s  u ) (8b) 

Accordingly, we have 

:=~/system :=~tR(~'5~r @ (~C~R(~ ~S) ( 9 )  
nEl~ 

as the operator algebra for the Josephson junction. 
The coupling between R and S consists of a tunneling Hamiltonian 

H r ( N )  = N2(r~s~ + s~r~ )  =: NWN (10) 

822/54/1-2-25 



384 Unnersta l l  

describing the tunneling of condensed pairs, and an electrostatic interaction 
part, stemming from the capacity of the junction. I have argued 
elsewhere (21) that this electrostatic energy should be taken into account in 
this framework with a Hamiltonian 

e 2 1 
Hc(N)=N.2KZZN; K = ~ ,  ZN:=~(r3--S3N) (11) 

describing charge imbalances due to nonequilibrium distributions within 
AR, As, and by setting (in general) 

e e -  es=: Ae = p e -  #sr  (12) 

in order to cover the charge imbalance due to different values of # (dif- 
ferent positions of the Fermi surface). These are brought about by a fixed 
dc voltage across the junction. One then has (z denotes the expectation 
value Of ZN) 

V= vDC-[ - g AC=Ae 2K - - + - - z  (13) 
e e 

as the expression for the total voltage. 
In this way, the model Hamiltonian for the closed Josephson junction 

becomes 

Hsystem(N ) := N{ (eR + es) 1N + 2(~Rr3N + aS s3) -- g (r~vrg  + S+SN ) 

+ )4r~vs N + S+rN) + 2KZ2N} (14) 

All constants are chosen in such a way that Hsystem(N ) is of mean-field type 
and strictly extensive [O(N)]. 

2.2. Dynamics of Intensive Observables 

The structures defined so far are easily seen to fall within the general 
setup discussed by Hepp and Lieb in ref. 1. In order to consider the 
macroscopic dynamical equations of the model (i.e., the evolution of expec- 
tation values of intensive observables in the thermodynamic limit), let us 
introduce the operator describing the pair current, 

JN : = ( - i ) ) ~ ( r + S N - S + r N )  (15) 
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One then has as a set of physical operators which form a closed set under 
the commutator N[ , ] 

r 3, s~ = particle densities of R and S 

c~, c s = Cooper pair densities of R and S 

WN = barrier energy (density) 

J N  = Josephson current (density) 

(16) 

The Heisenberg equations of motion for these operators are {(d/dt)a N = 

i[Hsystem(N), aN] } 

d 
dt r3N = J N 

d 
dt s3 = --JN 

d 
d-t = - 2 j N G  

(17) 

d s = 2 j N S  3 -~ CN 

d 
dt WN = - -2de ju - -  (4K+ 4g)JNZN 

d 
W N Z  N - -  42 ( C N S  N - -  CNrU) _.~ju=2deCOx+r4K+4g~~ ) 2 R 3 S 3 

If we now restrict ourselves to extremal permutation-invariant states 
o ) ~ S P ( d )  [which are just the product states ~ =  @,~N P, 
p E S ( J ~ |  for example, the BCS ground states are such "pure 
classical ''(1) or "macroscopic ''~H) states], we can immediately apply 
Theorem 2.3 of ref. 1 to obtain the dynamics of expectation values of the 
operators (16) in the thermodynamic limit N ~  oo: they obey the very 
same equations (17), thus forming a classical, nonlinear set of differential 
equations. 

Denoting these expectation values by simply dropping the N index, it 
is easy to show that under the physically natural choices 

r 3 + s  3~0,  c R = c s = : c  at t = 0  (18) 
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(which are fulfilled, e.g., for the BCS ground states), the system (17) 
simplifies to 

d 
--~ z ( t )  = j ( t )  

d ~c(t)= - 2 j ( t ) z ( t )  

d 
w(t) = - 2 A e j ( t )  - (4K+ 4g) j ( t )  z(t)  

d 
-~ j ( t )  = 2Ae w(t) + (4K+ 4g) w(t) z(t) - 822c(t) z(t)  

(19) 

Barrier energy w and Josephson current j are related through 

Aqo = ~o R - ~o s (20) 

where q~R (~0S) is the phase angle of the superconductor R(S). Explicitly, 

j ( t )  = 22c(t) sin Aq~(t) 

w(t) = 22c(t) cos Acp(t) 
(21) 

These equations follow directly from the definitions and the relations 

r+(t)  = [c( t)] l /Ze io"('), s + ( t ) =  [c(t)]l/Zei~S(') 

As the final equations of motion for the closed Josephson junction, written 
in the dynamical variables 

A~o = phase difference between R and S 

z = difference of particle densities (within A ) 

c = Cooper pair density 

(22) 

we obtain 

d 
d--t (c + z 2) = 0 

d 
- -  z = j = 22c sin d~0 
dt 

d 
dt d~o = 2Ae -~ (4K+ 4g)z  - 42 cos dcp z 

(23) 
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The physical content of these equations, exhibiting several additional terms 
as compared to the classical Josephson relations, is discussed in ref. 21; for 
present purposes, it suffices to point out that these equations do not 
describe the dc Josephson effect: j =  const r  entails z =  const, t, giving 
Acp #cons t  and hence j r  const. This is not surprising, since in a closed 
system of this kind there can be no permanent dc currents. To describe 
such situations consistently, it is imperative to take into account an 
external current source, i.e., to treat the junction as an open system. This 
treatment is prepared in the next section. 

3. THE S I N G U L A R  COUPLING L IMIT  A N D  ITS 
INTERPRETATION 

In order to discuss the physical meaning of the singular coupling limit, 
I first briefly review its mathematical structure; for definiteness and in view 
of the present applications, I shall be more specific than is necessary (for a 
more general and complete review, see ref. 4). 

Consider an open system, described by a finite Hilbert space ffFs, 
creation and annihilation operators a~ ..... a~ ,  and a Hamiltonian Hs; it is 
coupled to a reservoir consisting of one or more identical, infinite, and 
quasifree Fermi systems. Each of them is described by the operator algebra 
CAR(L2(/, de))), where I~_R is the spectrum ~r(h) of the one-particle 
Hamiltonian 

h: L2(I) ~ L2(I) 

f(co) ~ cof(co) 

Hence, I describes the energy modes of the reservoir. We take each reser- 
voir system to be in the same quasifree, gauge-invariant state c~R on the 
CAR algebra, which is determined by its two-point correlations 

co R( A * ( f  ) A( g) ) = ( R f  , g ) L2(,) 

where R: L2(I) ~ L2(I) is a positive operator with 0 ~< R ~< 1. coR is assumed 
to be invariant under the free dynamics, entailing that R is a multiplication 
operator, [Rf](co)=r(co)f(co);  one can see that 0~<r(co)~<l gives the 
occupation probability of the mode co in the state co R. The Hamiltonian of 
the reservoir on the GNS Hilbert space ~ R  will be denoted by H R. 

In this section, I take a simple one-particle exchange as the system 
reservoir interaction. There are two natural choices for the reservoir: 

(a) "Individual reservoir": the reservoir consists of N Fermi systems, 
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one for each degree of freedom an#, n = 1 ..... N, in the object system, and 
one has for the interaction Hamiltonian 

H,=2~a*an( f~)+A*( f~)a~ ,  f,. ~ L2(I) fixed (24) 
n 

(b) "Collective reservoir": each degree of freedom is coupled to the 
same Fermi system which constitutes the reservoir, and 

H,= ,~ ~, a*A(f~) + A*(f~) a, (25) 
n 

H1 is a bounded operator on ~ s  | ~ ,  and 2 is a coupling constant. The 
coupling function fc(~o) determines the weight of each energy mode ~o in 
the interaction process. 

If we now consider an uncorrelated initial state, p | mR, p e ~-(~s)  +.~ 
(positive trace class operators on Jgs of norm 1), the reduced dynamics of 
the system p(t), defined by 

Tr~s[p(t)A]=Tr~s| "mp|174 V A e ~ ( ~ s )  (26) 

with the full Hamiltonian 
H= Hs + HR + HI (27) 

can be calculated explicitly: 

~ p ( t ) =  - i [ H s ,  p] ( t )+22  :K(s) p ( t - s ) d s  (28) 

The reservoir structure and H~ enter into the integral kernel i t ( s )  (see 
ref. 4 for an explicit expression) only via the correlation functions 
[A # (fc)(t) denotes the free reservoir dynamics-] 

C~(t) = o)R(A(f~)(t) A*(f~)) 

((1 R ) f ~ , - ~ '  = - e ~gc 5 L2(1) 

= s  [1--r(r If~(co)12e eo~, (29a) 

and 
C2(t) = co~(A*(L)(t ) A(L)) 

= (R(e-~'fc),  L)~( , )  

= fi dco r(co) [ fc(oo)j 2 e i~176 (29b) 

Moreover, one has J l (s )  = 0 ~ C~/2(t) = O. 
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If we let zR be the decay time of the correlation functions, and r s the 
typical variation time of p due to the interaction with the reservoir (i.e., in 
the interaction picture), it is now easy to see qualitatively under which 
conditions the memory terms in (28) can be neglected, so that the 
subdynamics receives a semigroup structure 

d 
-~ p(t) = ~ E p ( t ) ]  

(and hence becomes tractable): we have (in the interaction picture) 

;o ;: I;? ] ~ ( s ) p ( t - s ) d s ~  Jf(s) p ( t - s ) d s  ,~ Jf(s) ds p(t) (30) 

if p(t - s) ~ p(t) in [0, zR], i.e., if Zs >> zR. This qualitative argument can be 
made rigorous in the limit 

"~ S/75 R --~ 0(3 

which can be performed in two ways: the weak coupling limit and the 
singular coupling limit. 

3.1. W e a k  Coupl ing  Limit 

Here one lets 2 ~ 0 ~ Ts ~ 0% keeping ~R constant ( < oo); in order to 
see the effect of the reservoir, one has to rescale the time: z = 22t. Thus, the 
price one has to pay for obtaining a semigroup description is the fact that 
free evolution and the dissipative motion effected by the reservoir are on 
different time scales: the approximating dynamics is 

p( t )=exp( - i [Hs ,  . ] t + K r ) p = e x p ( [ - i [ H s ,  .]+22K]t)p (31) 

with [in the case (24)] 

where 

Kp = f ?  at ~ { C~(t)[anp, a*( t ) ]  + C2(t)[a*p, an(t)] + b.c.} 
n 

(32) 

a~ (t) = eiHs'a.e -iHs~ 

(This is the generator most often used, (1~12) although it can be shown (28) 
that the physically better choice is an average over K.) For  this reason, the 
weak coupling limit can practically only be used in situations where the 
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free system dynamics plays no role, as in the approach to equilibrium; 
otherwise, it completely dominates the dissipative part 2ZK for small 2. 

K is heavily dependent on H s and, in the usual case where c0~ is the 
fl-KMS state [-i.e., r(co)=e-~~ on /~: typically, it has the 
Gibbs state exp(- /~Hs) as a global attractor. Thus, the system is still 
widely determined by its internal structure Hs. 

3.2. Singular Coupling Limit 

Here, one lets ~R ~ 0, while r s is constant (2 = 1). The most general 
situation in which this happens is contained in the following easy lemma: 

ZR ~ 0 if and only if the reservoir is "singular," i.e., if and Lemma. 
only if 

a ( h )  = / =  

'R = r 1, i.e., 

f~ ~ const 

r ( ~ )  - r 

Proof. zR~O means Cm(t)--,C1/26(t ). In (29a) and (29b), the 
cS-function can only be obtained as the Fourier transform of the constant 
function; therefore, one needs the integration range I to be the whole line, 
and both r(co) ] fc(m)] 2 and [ 1 - r (co)]  ! f~(m)l 2 to be constant. This implies 
the assertion. (In the special case r=�89 one can let I =  [0, ~ ) ;  
in this case, C~(t)+C2(t)--*6(t) without approximating 6-functions 
individually. (29)) | 

If we take f ;  := g exp(-em2), in the singular coupling limit e ~ 0  we 
obtain the subdynamics (3) 

p(t) = exp ( [ - i [Hs ,  . ] + K] t)p (33) 

with [in the case (24)] 

Kp = ~g2 ~ {(1 - r)[a,p, a,*] + r[a*p, a,] + b.c.} (34) 
n 

The properties of R are very different from those of K: it is neither depen- 
dent on H s nor on a fl, since in the allowed states ~o R, R = r l ,  there is no 
defined temperature (with the above-mentioned exception of r =  1/2); 
therefore, R does not describe thermodynamic behavior, i.e., approach to 
equilibrium. In fact, no such general statement about its effects can be 
made; note, however, that K, being of the same strength as Hs, can alter 
the behavior of the system quite drastically. 
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The presence of "unusual" states mR with R =  r l  and the fact that the 
energy spectrum of the reservoir is unbounded from below are the price to 
pay in this case for the semigroup structure of the dynamics of the open 
system. Such a price might be considered very high, and higher than in the 
weak coupling limit. However, the conditions of the lemma can be 
physically interpreted in the following way. Consider a situation in which 
the energies of a regular reservoir (with Hamiltonian HR, state co R = 
fl-KMS state, and I =  [ - -c ,  ~ ) )  are much bigger than the energies of the 
system, so that they should be measured on a different scale: co = energy 
scale of the reservoir, x=co /e2=energy  scale of the system. On x, the 
reservoir structures look like 

L(x )  = L(~:x), 

~(x) = r(e:x), 

so that the Hamiltonian is (e.g.) 

HR(X ) = -~ HR 

I(x)= -- ~ ,  o0 

" = H s + - ~ H R +  ~ {a*A~(f~)+h.c.} 

and the correlation functions look like 

c2(t)=f~ dx IL(x)12F(x)e ix' 
(x) 

= dx ] f~(eZx)l z r(e2x) e ixt 
- -  C / 8  2 

, ~ o  fo~ dx [fc(O)[ 2 r(O) egX'= 2~ [f~(O)[ 2 r(O) 6(0 
- - o o  

(35) 

In the limit e ~ 0, all the system sees of the reservoir is a neighborhood of 
the energy mode co = 0, and there the coupling function fc and the 
occupation probabilities are approximately constant, being equal to fc(O) 
and r(0). In other words: even though the energy modes of the reservoir 
and its state are "really" ( = o n  the co scale) regular, they "look" singular 
from the point of view .of the system ( = o n  the x scale). 

[-Remark: On the co scale, the Hamiltonian reads ~15) 

H = I;2Hs + H R + e ~" {a*A,(f~) + h.c. } (36) 
n 
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and hence the limit e ~ 0  is formally a weak coupling problem. This 
mathematical equivalence between weak coupling limit and singular 
coupling limit was first pointed out by Palmer. (15) However, his statement 
that the distinction between the two "depends on which of two possible 
time scales is regarded as natural or physical" seems to be somewhat 
misleading: the "weak coupling limit" with (36) shows none of the typical 
features of the weak coupling limit proper described above; the sub- 
dynamics it leads to is 

p(t)=exp([-iHs+ k]r), z=e2t 

with K ~ being the singular coupling generator (34).] 
In conclusion, one can say that both coupling limits are characterized 

by distinct energy proportions: in the weak coupling limit, the coupling 
energy is very small compared to the system energy and reservoir energy; 
in the singular coupling limit, interaction and system energies are similar 
but much smaller than the reservoir energies. On this account, neither one 
of them is more or less physical than the other--the important question is 
rather: what are the real energy proportions in the system to be described 
and do they justify the use of any one of the limits? The physics of the two 
situations is obviously quite different, which is reflected in the fact that the 
resulting semigroups have very different properties. 

4. THE C U R R E N T - D R I V E N  JUNCTION 

4.1. Coupling to External Drive Wires 

In this section, we connect the Josephson junction to external wires 
acting as a dc current source; this models the experimental situation of a 
current-biased junction (ref. 30, Chapter 6). The wires are metallic systems, 
taken to be in the normal phase, which drive particles through the 
junction; of course, we take into account only their physically relevant 
part, the conduction band, which can be described as a free electron gas. 

As mentioned in the introduction, there are various PoSsibilities for the 
coupling of such wires to the superconductors, due to the options 
individual/collective reservoirs, or electrons/Cooper pairs to be fed into 
(drawn from, respectively) R and S. Since heat baths are in general much 
bigger than the system they cool, for them individual reservoirs seem to be 
the proper choice(l~12); the wires, however, are roughly of the same size as 
the junction, and accordingly I prefer to describe them as a collective 
reservoir. 
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As regards the choice of particles, surely Cooper pairs are best 
adapted to the superconducting situation; in the interaction process 

r~A(f)  A(g) + A*(f)  A*(g) r u (37) 

two electrons in the states f and g leave the wire and show up in the super- 
conductor as part of the condensate, and vice versa. Thus, the "conden- 
sation process" (the breaking up of a Cooper pair, respectively) is built into 
the coupling, and in this case the wires carry only the dc supercurrents in 
the junction to and away from it. l-One might argue that the condensation 
process should be taken care of by the BCS interaction in the junction 
Hamiltonian, and therefore regard an interaction process involving only 
electrons, i.e., of the form (25), as more natural; for this, see Section 4.4.] 

The coupling Hamiltonian, then, is built from (37) and reads 

HWR(N) = N1/2{r+AI(f~) AI~(gc) + A~R(f~) * A~(gc)* r u } (38) 

where for technical reasons I choose the N dependence as shown (compare 
ref. 23) and two independent CAR systems I and II constituting the wire. 
Of course, there is a similar Hamiltonian HtWS(N) for the other super- 
conductor-wire connection. 

The next step is to decide which (if any) coupling limit to use in order 
to calculate the effect of the wires on the system dynamics, i.e., in order to 
find the generator of the induced semigroup. The discussion in Section 3 
has shown that to this end one has to look at the energy proportions of the 
total system. Observe first that there is no reason to suppose that the HI 
should be particularly weak--the currents driven through the junction by 
the wires are of the same magnitude as the (ac) currents in the closed 
junction described by (23). Second, while the superconductor energies e(k), 
k ~ A, range over a few millieV, the conduction band of the wires extends 
over a few eV. This shows that we are precisely in a situation justifying the 
use of the singular coupling limit [-and not of the weak coupling limit used 
(nonrigorousty) in ref. 20 for this problem]. 

In accordance with the singular coupling limit, we choose co~R~s~, the 
quasifree, gauge-invariant state with R=~IR~s)I, as the state of the 
wire connected to R (S). We then arrive at the following mathematical 
structures for the total system [-dw := CAR(L2(R)) I | CAR(LZ(R)) n] (see 
Fig. 1 ): 

Operator algebra 

~W| ~system @ ~W (39) 
Hamiltonian 

H(wire) + H~VR(N) + Hsys,em(N) + HWS(N) + H(wire) (40) 
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LEFT WIRE I I-- R s 

Fig. 1. The structure of the open Josephson junction. 

----~RIGHT WIRE t 

State (at t=O) 

((DrtR (~) Or/R) (~ fosystem (~ (fOrts (~ fortS) (41) 

Here, r/s > t/R models the current source character of the wires, the sign of 
the current being in accordance with (15) (positive from left to right); we 
set t/s + qR = 1 for particle conservation. 

These structures will be analyzed in the next section in terms of the 
subdynamics of the open system, the current driven Josephson junction, in 
the infinite volume limit. 

4,2. Equations of Mot ion  for the Intensive Observables 

As outlined in the introduction, we first look at the subdynamics of 
the finite system. Due to the symmetry of the structures (39)-(41), it 
suffices to consider only one side, say R with HffR(N). Setting fc(fo)= 
f(0)exp(-eco2),  we are in essence in the range of application of the 
theorem proved in ref. 3; the only difference is that, due to the two-particle 
nature of (38), the relevant correlation functions are the products 

l ,(tl = c ] ( t )  i =  1, 2 

for which [-compare (29a), (29b)] 

lim Dl(t ) = 2re(1 -- ~/R) 2 I f~(0)j 2 II g~ll ~z 6(0 
~ 0  

=: T(1 - qR) 2 6(t) 

lim D2(t)= 2rc(~/R) 2 IL(0)I 2 [Ig~]122 6(t) 
e~0  

=: 7~/~b(t) 

Then ref. 3 shows the existence of the singular coupling limit e--, 0; 
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specializing the generator of the induced semigroup on ~r [(3)]  to our 
case, we obtain in the Heisenberg picture 

G R ( N ) ( A ) = 2  N { ( 1 - ~ I R )  2 [ r~v ,A] r  u +r/~[r m , A ] r ~ + h . c . }  (42) 

for all self-adjoint A e ~r [compare (34)]. 
Similarly, one gets for the effect of the right wire on S 

Gs(N)(A)=~7 N{(1 - tls) 2 Is +, A]  s u + qs[2 S-N, A ]  s + + b.c.} (43) 

for all self-adjoint A ~ ~r 
The total generator is then 

GN := GR(N) + Gs(N)  (44) 

so that the full dynamics for the finite system is given by 

d 
- -  A = i [ O s y s t e m ( N ) ,  A]  + G N ( A  ) V A  ~ 6~r ) (45) 
dt 

This yields as equations of motion for the physically relevant intensive 
observables (16) [compare (17)] 

d 3 
r N = JN-- Y(qS-- fiR) C~ 

d 3 
-'~ SN = --Ju + 7(qS -- t/R) cs  

d R --2jur~u + 2~(qs-- ~R) Curu _ . ~ C N ~  R 3 

(46)N 
d s 

CNS N ~ C N = 2 j N S ~ _ 2 y ( t l S _ 1 1 R )  S 3 

d 
d t  WN ~-- - -2AejN -- (4K+ 4 g ) j u Z  u 4- 2y(rls - t l R )  WNZ N 

d 2 R 3 
- -  C NF N) + 27(t/S-- tl R) JNZ N dt'iN = 2Ae WN + (4K+ 44) WNZN-- 42 (CuS N -  S 3 

Note here that due to the same basic interaction ansatz (37), struc- 
turally equivalent reservoir terms have been obtained in a different 
(nonrigorous) way in refs. 24 and 25. 
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In order to determine now the dynamics of the expectation values for 
the states (/)system = :  (J')U-(~SP(~q~) and in the thermodynamic limit N ~  ~ ,  
we need an extension of Hepp and Lieb's theorem used in Section 2.2 from 
automorphisms to contraction semigroups of the type (45). This is, for- 
tunately, not very difficult and has been elaborated in ref. 22, Theorem I. 
The only assumption for the proof to go through is that the corresponding 
classical system of differential equations [ (46)N without N indices =: (46)] 
has global solutions for initial values corresponding to ~o e OSP: 

(r3(0) ..... j(0)) = ( lim c0(r 3) ..... lira O(JN)) ,  03 ~. SP(~.~) (47) 
N ~  N ~ c ~  

This is contained in the following proposition, which in its general form 
supplements Theorem I of ref. 22 and will be proven in the Appendix: 

P ropos i t ion .  The compact set D___ ~R 6 of initial conditions (47) is 
positive invariant under the classical flow defined by (46). 

The preceding discussion has shown that (46) gives the full dynamics 
of the physical variables of the open system in the thermodynamic limit. In 
this paper, I only analyze these equations under the assumptions (18), 
making it possible to rewrite them in the variables (22): 

d c(t)  = - 2 z ( j ( t )  - 7(r/s- r/R) c( t ) )  r d dt ~ [e(t) + z2(t)] = 0 (48a) 

d 
d-5 z( t )  = j ( t )  - ~ ( r / s -  r/R) e( t)  

= 22c(t) sin Aq~(t) - 7(r/s - r/R) c(t)  (48b) 

d 
Aq~(t) = 2Az + (4K+ 4g) z ( t )  - 42 cos A~o(t) z ( t )  (48c) 

These are the final dynamical equations for the macroscopic behavior of 
the current-driven Josephson junction. The physical region of R 3 is here 

D =  {c, z, A~o[c~ [-0, 1/4], z~ [ -  1/2, 1/2], Aq~ [0, 2~z]} 

This can be seen using (4) and the product structure of the states 
~o ~ O S P ( ~  ). 

4.3. The dc Josephson Effect  

In the macroscopic dynamics (48) the effect of the external drive wires 
on the dynamics of the closed junction (23) is solely to add the term 

j~• := 7(r/s - r/R) c( t)  (49) 
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which clearly describes the external current. As was to be expected from the 
microscopic model structures, the magnitude of this current depends on the 
"current source strength" qs-~/R;  the dependence on the density of the 
condensed pairs reflects the fact that only supercurrents are included in the 
present description. 

If there is no dc voltage across the junction, Ae = 0, one has the 
following unique stationary solution of (48) in the physical domain D (if 
one excludes the case c-=0---no superconducting phase--and observes (21) 
2 ~ K ,  g): 

z0 = 0, Co = c(0) 

7 ( ~ s -  ~R) (50) 
sin Aq%- , cos A~p0 = ___(1 - sin2 A~oo) 1/2 

22 

j = j e x = - 7 ( q s - q R )  Co with 7(~/s- r/R) ~ [0, 22] (51) 

This is just the dc Joseph'son effect. Condition (51) reflects the fact that jex 
must not be greater than the critical current J0--22c0. The free parameter 
co of the solutions is determined physically by the temperature of the 
junction. The question whether cos A~Po<0 or cos A~Po>0 gives the 
physically correct solution can be settled ~3~ by arguing that the barrier 
energy w = 22c o cos A(po should be minimal, hence cos Aq% < 0. 

Finally, if one neglects the small correction (48a) to the usual 
assumption c =  const (compare ref. 21) and the equally small last term in 
(48c), one obtains the system 

d 
-~ z ( t )  = 22c o sin Aq)(t)  - 7(~Is - 

d 
dt Aq~(t) = (4K+ 4g) z ( t )  

qR) CO (52a) 

(52b) 

which is structurally equivalent to the phenomenological model of 
Anderson'31): (52) is a Hamiltonian system with Hamilton function 

H =  (2K+ 2g) z 2 + V(A~p) 

V(Acp) = 22Co cos A~o + V(r/s -- r/R ) c o A~p 

with V(d(p)  being the famous "washboard" potential. 
Thus, the phenomenological theories can be fully recovered from the 

microscopic treatment presented here. 
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4. ALTERNATIVE M O D E L S  

It might seem almost trivial that a coupling of the Josephson junction 
to external wires should yield a satisfactory description of the dc Josephson 
effect by the ensuing macroscopic dynamical equations, as is indeed the 
case for the model developed above. This is, however, not true, as can be 
seen explicitly by considering alternative models for the wires and their 
interaction with the superconductors. 

Let us look at the model sketched in ref. 1. Here, individual reservoirs 
were taken, i.e., the operator algebra for the wire is 

d w =  | | CAR(L2(R))o. (53) 
r t E ~  O-= + , - -  

so that there is one infinite CAR system for each degree of freedom 
+n  = (k, T), - n  = ( - k ,  ~). The interaction is chosen to be a single-elec- 
tron exchange 

HWR(N) = Z ~ R+ A R- (54) c . . . .  ( f )  + Aon(f)* c~, 
n G ~  - b ,  

where the co~ are the usual electron creation and annihilation operators for 
the superconductor R. Inserting this into the structures (39)-(41), the 
singular coupling limit yields the generator (44) with 

R- R- R+ + h.c.} GR(N)(A)= ~ ~ {(1--~lR)[c~+,A]c~, +qR[c~, , A ] c ~ ,  

(55) 

One easily checks that O N gives the same reservoir terms in the dynamical 
equations for the intensive observables as Hepp and Lieb obtained with 
their methods (which, however, require setting qR = 0, qs = 1). Proceeding 
as before, one arrives at the following dynamical description of the 
junction, taking the place of (48): 

d 
c(t) = -2j( t )  z(t) - 2yc(t) 

1 
d z(t) = j(t) - 7z(t) - ~  Y(~ls- ,R) (56) 

d 
dt Aq~(t) = 2Ae + (4K+ 4g) z(t) - 42 cos A~o(t) z(t) 
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In search for the dc Josephson effect, we set Ae = 0 and look for stationary 
solutions of (56) in the physical domain D, observing as before that c r 0 
and 2 ~ K, g. There are none! 

Stationary solutions exist only under the unphysical condition 
2 > ~ K + g :  

C o = ~  ( ~ s - ~ R ) -  , z o -  2 r  

cos Aq~ o = K +  g sin Aq~o F 2 ' =7 (57) 

' ' [  j=rz0+5 (ns-n~)=g~ (ns- ~R)- 

with F := [22 - ( K +  g)2] ~./2 and rl s - tl R �9 [7/F,  1 ], y <~ F. 
Even if we were to forget about the fact that 24 .  K + g  in the real 

system, this solution could not be interpreted as the dc Josephson effect: 
since z g= 0, we have [with (13)] V r  0, which is physically wrong. Further- 
more, it is quite strange that Co (and therefore the critical current Jo = 22%) 
should depend on the current source strength. 

It is not easy to interpret this unphysical behavior of the model (53), 
(54) (one can show with the methods of ref. 14 that it is not due to the 
limit procedure of the singular coupling limit). Our best guess is that the 
wires (53) are "too big" for the system: for realistic parameters 2, K, g the  
only way to keep the phase difference constant (so as to have a dc 
Josephson current j )  is the physically adequate condition V= 0, ~ z = 0; 
but in this case the reservoir destroys the superconducting phase via 
(d /d t )c  = - 2 7 c .  

The same problem occurs if we connect this current source to a single 
superconductor: in this case, we have 

d d r 3 = 0  ' d dt c = 0, ~ ~ q~R = 2eR + 2g r3 

for the closed and 

d d r3 _27r3, d dt  c =  -47c,  ~-~ = - - ~ t ~ R = 2 ~ R + 2 g r  3 

for the open system. Again, the superconductivity is destroyed by the wires. 
An analogous argument applies to the model in ref. 26, where the same 
wire structures were used to carry Fiske currents. One can look at this 

822/54/1-2-26 
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phenomenon as an example of the capability of the reservoir to alter 
internal system structures, mentioned in Section 3. 

Unfortunately, we cannot let electrons flow out of a collective 
reservoir, since the corresponding model transcends fundamentally the 
mathematical framework in which we work: the intensive observables 

R+ 1 co~ : = ~  R+ C~rff  , O ' =  -J-, - -  

appearing in that model no longer have O(1/N) commutators, a basic 
prerequisite for the entire reasoning of ref. 1 followed here. 

Thus, while, due to the view regarding an electron interaction between 
wire and superconductor as natural, we would consider it interesting to 
have a successful such model, there seems to be none in sight. 

I have, however, constructed yet other models with individual reser- 
voirs, which I shall not discuss here for reasons of space; they confirm what 
I hope the discussion of this section has shown: in situations where it is 
physically appropriate to use the singular coupling limit for the study of 
many-body open systems, the qualitative behavior of the macroscopic 
dynamical equations depends sensitively on the coupling constants [see 7 
in (57)], on the nature of the coupling, and on the size (relative to the 
object system) of the reservoir. 

A P P E N D I X  

In the notation of Refs. 1 and 22, the intensive observables (which I 
assume to be self-adjoint here) averaging over the subsystems n are 
denoted by Ctku, k = 1,..., L; they obey the quantum equations 

d~ku(t)=i[Hsystem(X),~k](t)+GN(~k)(t)=: f(~lu(t),...,~L(t)) (A1) 
dt 

where f is a polynomial The corresponding classical differential equations 
[obtained formally by dropping the N indices in (A1)], 

8 
8t _~(t, y) = f(_~(t, 7)), _~(0, 7) =Y (A2) 

define a flow _a(t, y) on ~t.. 
In this general setting, I prove the following. 

P ropos i t ion .  1. Solutions of (A2) which start in the compact set 

D:={7_~RL[2= lira ~O(gN) f o r a n o o ~ S P } ~  L (A3) 
N ~  
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are defined for all t ~> 0 and are bounded by 

c := max (lim [[~%1[) < oo 
k N 

. Theorem I of ref. 22 holds for CO s ~SP; i.e., 

lim CO(CPN(t)) = ctk(t, 7) Vt ~> 0, Vk = 1 ..... L, 
N 

VCO ~ ? S  p 

In particular, ~?S p is positive invariant and hence D is positive invariant 
under the flow g(t, y). 

P r o o L  1. Assume that a solution with initial value 7o e D  
corresponding to an COo ~ ~?S p is maximally defined on a finite interval 
[0, b). Then one can find (32) a 0 # 6 </~ + e < b, e small, such that 

I~k(/~, 7o)1 > c for a k e  {1,..., L} (a4) 

Without restricting generality, one can suppose that 

[~(t, 7o)1 ~< t-~( 6, 7o)[ Vt ~</~ 

One can then follow the Picard iteration scheme for (A2), precisely as in 
refs. 1 and 22, for intervals [/d2, ( l+  1) d2), l = 0 ,  1 ..... until one gets to the 
interval with ld2 ~< 6 + e ~< (l + 1 ) d2; here we use the iteration scheme up to 
/~ + 5. The arguments of the mentioned references show that on the interval 
[0,/] + 5], and thus in particular for t -- b, it holds that 

lira COo(C~v(t)) = ek(t, Yo) Vk = 1,..., L (A5) 
N 

But this entails 

[c~k(/~,_7o)[ = l im [coo(C~(/?))t ~<lim [[~v(/~)l[ ~ lim [[~kNI I ~<C 
N N N 

Vk 

which contradicts (A4). The starred inequality is true because of the 
contraction property of the semigroup defined by (A1). (8) 

2. Part 1 shows that Theorem I of ref. 22 is true for co ~ g S  p, and in 
fact for all pure classical states in the sense of ref. 1 (we have not used the 
permutation invariance of the states). In particular, (A5) holds for all t ~> 0, 
so that pure classical states remain pure for all times if one looks at the 
dynamics in the Schr6dinger picture. Since the generator in (A1) is 
permutation invariant, this property of the states is also conserved in the 
course of time, so that one can conclude the positive invariance of 0S p. 
This implies the positive invariance of D under the flow _~(t, _7). 
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